TOPICS IN COMPLEX ANALYSIS @ EPFL, FALL 2024 HOMEWORK 8

MATHIAS BRAUN AND WENHAO ZHAO

- **Homework 8.1** (On Picard's little theorem). a. Employ Proposition 5.10 from the lecture notes to prove Picard's little theorem without using Picard's great theorem.
 - b. Show Picard's little theorem is equivalent to the following claim. If $f, g: \mathbb{C} \to \mathbb{C}$ are entire functions such that $e^f + e^g = 1$, then f, g are constant.

Homework 8.2 (Landau's sharpened version of Picard's little theorem*). a. Prove there exists a function $R: \mathbb{C} \setminus \{0,1\} \to (0,\infty)^1$ such that

$$\{f \in \mathcal{H}(\bar{B}_{R(a)}(0)) : f(0) = a, f'(0) = 1, f \text{ omits } 0 \text{ and } 1\} = \emptyset.$$

b. Show that the statement in a. implies Picard's little theorem.

Homework 8.3 (Approaching Picard's great theorem). Prove Picard's great theorem is equivalent to the following claim. Let $f: B_1(0) \setminus \{0\} \to \mathbb{C}$ be any holomorphic function such that $\{0,1\} \cap f(B_1(0) \setminus \{0\}) = \emptyset$. Then f or 1/f is bounded in a neighborhood of 0.

Homework 8.4 (A stronger version of the sharpened Montel theorem). Let $G \subset \mathbb{C}$ be a simply connected domain and for $m \in \mathbb{N}$ define

$$\mathcal{F}_m := \{ f : G \to \mathbb{C} : f \text{ holomorphic}, f(G) \cap \{0\} = \emptyset, \#\{f = 1\} \le m \}.$$

Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence in \mathcal{F}_m . Show that either along the entire sequence $|f_n|$ converges locally uniformly to ∞ or there exists a subsequence of $(f_n)_{n\in\mathbb{N}}$ that converges locally uniformly to a holomorphic function $f: G \to \mathbb{C}^2$.

Date: November 18, 2024.

¹**Hint.** Set R(a) := 3L(1/2, |a|), where L is given by Schottky's theorem.

²**Hint.** Consider a suitable root $\sqrt[k]{f}$ for $f \in \mathcal{F}_m$.